3-2 Zeros of Polynomial Functions

Unit 3 Quadratic and Polynomial Functions

Concepts and Objectives

- Objective #10
 - Find rational zeros of a polynomial function
 - Use the Fundamental Theorem of Algebra to find a function that satisfies given conditions
 - Find all zeros of a polynomial function

Factor Theorem

The polynomial $x - k$ is a factor of the polynomial $f(k)$ if and only if $f(k) = 0$.

Example: Determine whether $x + 4$ is a factor of $f(x) = 3x^4 - 48x^2 + 8x + 32$
Rational Zeros Theorem

If \(\frac{p}{q} \) is a rational number written in lowest terms, and if \(\frac{p}{q} \) is a zero of \(f \), a polynomial function with integer coefficients, then \(p \) is a factor of the constant term and \(q \) is a factor of the leading coefficient.

In other words, the numerator is a factor of the last number and the denominator is a factor of the first coefficient.

Rational Zeros Theorem

- Example: For the polynomial function defined by \(f(x) = -8x^4 - 26x^3 - 27x^2 + 11x + 4 \)
 (a) List all possible rational zeros
 (b) Find all rational zeros and factor \(f(x) \) into linear factors.

Fundamental Theorem of Algebra

Every function defined by a polynomial of degree 1 or more has at least one complex zero.

A function defined by a polynomial of degree \(n \) has at most \(n \) distinct zeros.

The number of times a zero occurs is referred to as the multiplicity of the zero.
Fundamental Theorem of Algebra

- Example: Find a function f defined by a polynomial of degree 3 that satisfies the following conditions.

 (a) Zeros of -3, -2, and 5; $f(-1) = 6$

 (b) 4 is a zero of multiplicity 3; $f(2) = -24$

Conjugate Zeros Theorem

If $f(x)$ defines a polynomial function having only real coefficients and if $z = a + bi$ is a zero of $f(x)$, where a and b are real numbers, then $\bar{z} = a - bi$ is also a zero of $f(x)$.

This means that if $3 + 2i$ is a zero for a polynomial function with real coefficients, then it also has $3 - 2i$ as a zero.

Conjugate Zeros Theorem

- Example: Find a polynomial function of least degree having only real coefficients and zeros -4 and $3 - i$.
Putting It All Together

Example: Find all zeros of \(f(x) = x^4 - x^3 - 17x^2 + 55x - 50 \) given that \(2 + i \) is a zero.